Back to Search Start Over

Measure-Theoretic Time-Delay Embedding

Authors :
Botvinick-Greenhouse, Jonah
Oprea, Maria
Maulik, Romit
Yang, Yunan
Publication Year :
2024

Abstract

The celebrated Takens' embedding theorem provides a theoretical foundation for reconstructing the full state of a dynamical system from partial observations. However, the classical theorem assumes that the underlying system is deterministic and that observations are noise-free, limiting its applicability in real-world scenarios. Motivated by these limitations, we rigorously establish a measure-theoretic generalization that adopts an Eulerian description of the dynamics and recasts the embedding as a pushforward map between probability spaces. Our mathematical results leverage recent advances in optimal transportation theory. Building on our novel measure-theoretic time-delay embedding theory, we have developed a new computational framework that forecasts the full state of a dynamical system from time-lagged partial observations, engineered with better robustness to handle sparse and noisy data. We showcase the efficacy and versatility of our approach through several numerical examples, ranging from the classic Lorenz-63 system to large-scale, real-world applications such as NOAA sea surface temperature forecasting and ERA5 wind field reconstruction.<br />Comment: 32 pages, 8 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.08768
Document Type :
Working Paper