Back to Search
Start Over
Time-domain braiding of anyons
- Publication Year :
- 2024
-
Abstract
- Contrary to fermions and bosons, anyons are quasiparticles that keep a robust memory of particle exchanges via a braiding phase factor. This provides them with unique dynamical properties so far unexplored. When an anyon excitation is emitted toward a quantum point contact (QPC) in a fractional quantum Hall (FQH) fluid, this memory translates into tunneling events that may occur long after the anyon excitation has exited the QPC. Here, we use triggered anyon pulses incident on a QPC in a $\nu= 1/3$ FQH fluid to investigate anyon tunneling in the time domain. We observe that braiding increases the tunneling timescale, which is set by the temperature and the anyon scaling dimension that characterizes the edge state dynamics. This contrasts with the electron behavior where braiding is absent and the tunneling timescale is set by the temporal width of the generated electron pulses. Our experiment introduces time-domain measurements for characterizing the braiding phase and scaling dimension of anyons.
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.08685
- Document Type :
- Working Paper