Back to Search Start Over

FlexRT -- A fast and flexible cosmological radiative transfer code for reionization studies I: Code validation

Authors :
Cain, Christopher
D'Aloisio, Anson
Publication Year :
2024

Abstract

The wealth of high-quality observational data from the epoch of reionization that will become available in the next decade motivates further development of modeling techniques for their interpretation. Among the key challenges in modeling reionization are (1) its multi-scale nature, (2) the computational demands of solving the radiative transfer (RT) equation, and (3) the large size of reionization's parameter space. In this paper, we present and validate a new RT code designed to confront these challenges. FlexRT (Flexible Radiative Transfer) combines adaptive ray tracing with a highly flexible treatment of the intergalactic ionizing opacity. This gives the user control over how the intergalactic medium (IGM) is modeled, and provides a way to reduce the computational cost of a FlexRT simulation by orders of magnitude while still accounting for small-scale IGM physics. Alternatively, the user may increase the angular and spatial resolution of the algorithm to run a more traditional reionization simulation. FlexRT has already been used in several contexts, including simulations of the Lyman-$\alpha$ forest of high-$z$ quasars, the redshifted 21cm signal from reionization, as well as in higher resolution reionization simulations in smaller volumes. In this work, we motivate and describe the code, and validate it against a set of standard test problems from the Cosmological Radiative Transfer Comparison Project. We find that FlexRT is in broad agreement with a number of existing RT codes in all of these tests. Lastly, we compare FlexRT to an existing adaptive ray tracing code to validate FlexRT in a cosmological reionization simulation.<br />Comment: 40+7 pages, 24 figures, submitted to JCAP. Comments welcome

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.04521
Document Type :
Working Paper