Back to Search
Start Over
CMOS compatibility of semiconductor spin qubits
- Publication Year :
- 2024
-
Abstract
- Several domains of society will be disrupted once millions of high-quality qubits can be brought together to perform fault-tolerant quantum computing (FTQC). All quantum computing hardware available today is many orders of magnitude removed from the requirements for FTQC. The intimidating challenges associated with integrating such complex systems have already been addressed by the semiconductor industry -hence many qubit makers have retrofitted their technology to be CMOS-compatible. This compatibility, however, can have varying degrees ranging from the mere ability to fabricate qubits using a silicon wafer as a substrate, all the way to the co-integration of qubits with high-yield, low-power advanced electronics to control these qubits. Extrapolating the evolution of quantum processors to future systems, semiconductor spin qubits have unique advantages in this respect, making them one of the most serious contenders for large-scale FTQC. In this review, we focus on the overlap between state-of-the-art semiconductor spin qubit systems and CMOS industry Very Large-Scale Integration (VLSI) principles. We identify the main differences in spin qubit operation, material, and system requirements compared to well-established CMOS industry practices. As key players in the field are looking to collaborate with CMOS industry partners, this review serves to accelerate R&D towards the industrial scale production of FTQC processors.<br />Comment: 36 pages, 5 figures
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.03993
- Document Type :
- Working Paper