Back to Search Start Over

A Key-Driven Framework for Identity-Preserving Face Anonymization

Authors :
Wang, Miaomiao
Hua, Guang
Li, Sheng
Feng, Guorui
Publication Year :
2024

Abstract

Virtual faces are crucial content in the metaverse. Recently, attempts have been made to generate virtual faces for privacy protection. Nevertheless, these virtual faces either permanently remove the identifiable information or map the original identity into a virtual one, which loses the original identity forever. In this study, we first attempt to address the conflict between privacy and identifiability in virtual faces, where a key-driven face anonymization and authentication recognition (KFAAR) framework is proposed. Concretely, the KFAAR framework consists of a head posture-preserving virtual face generation (HPVFG) module and a key-controllable virtual face authentication (KVFA) module. The HPVFG module uses a user key to project the latent vector of the original face into a virtual one. Then it maps the virtual vectors to obtain an extended encoding, based on which the virtual face is generated. By simultaneously adding a head posture and facial expression correction module, the virtual face has the same head posture and facial expression as the original face. During the authentication, we propose a KVFA module to directly recognize the virtual faces using the correct user key, which can obtain the original identity without exposing the original face image. We also propose a multi-task learning objective to train HPVFG and KVFA. Extensive experiments demonstrate the advantages of the proposed HPVFG and KVFA modules, which effectively achieve both facial anonymity and identifiability.<br />Comment: Accepted by NDSS Symposium 2025. Please cite this paper as "Miaomiao Wang, Guang Hua, Sheng Li, and Guorui Feng. A Key-Driven Framework for Identity-Preserving Face Anonymization. In the 32nd Annual Network and Distributed System Security Symposium (NDSS 2025)."

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2409.03434
Document Type :
Working Paper
Full Text :
https://doi.org/10.14722/ndss.2025.23729