Back to Search
Start Over
Online Scheduling via Gradient Descent for Weighted Flow Time Minimization
- Publication Year :
- 2024
-
Abstract
- In this paper, we explore how a natural generalization of Shortest Remaining Processing Time (SRPT) can be a powerful \emph{meta-algorithm} for online scheduling. The meta-algorithm processes jobs to maximally reduce the objective of the corresponding offline scheduling problem of the remaining jobs: minimizing the total weighted completion time of them (the residual optimum). We show that it achieves scalability for minimizing total weighted flow time when the residual optimum exhibits \emph{supermodularity}. Scalability here means it is $O(1)$-competitive with an arbitrarily small speed augmentation advantage over the adversary, representing the best possible outcome achievable for various scheduling problems. Thanks to this finding, our approach does not require the residual optimum to have a closed mathematical form. Consequently, we can obtain the schedule by solving a linear program, which makes our approach readily applicable to a rich body of applications. Furthermore, by establishing a novel connection to \emph{substitute valuations in Walrasian markets}, we show how to achieve supermodularity, thereby obtaining scalable algorithms for various scheduling problems, such as matroid scheduling, generalized network flow, and generalized arbitrary speed-up curves, etc., and this is the \emph{first} non-trivial or scalable algorithm for many of them.
- Subjects :
- Computer Science - Data Structures and Algorithms
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2409.03020
- Document Type :
- Working Paper