Back to Search
Start Over
On the pseudorandomness of Parry--Bertrand automatic sequences
- Publication Year :
- 2024
-
Abstract
- The correlation measure is a testimony of the pseudorandomness of a sequence $\infw{s}$ and provides information about the independence of some parts of $\infw{s}$ and their shifts. Combined with the well-distribution measure, a sequence possesses good pseudorandomness properties if both measures are relatively small. In combinatorics on words, the famous $b$-automatic sequences are quite far from being pseudorandom, as they have small factor complexity on the one hand and large well-distribution and correlation measures on the other. This paper investigates the pseudorandomness of a specific family of morphic sequences, including classical $b$-automatic sequences. In particular, we show that such sequences have large even-order correlation measures; hence, they are not pseudorandom. We also show that even- and odd-order correlation measures behave differently when considering some simple morphic sequences.<br />Comment: 15 pages, 3 figures
- Subjects :
- Mathematics - Combinatorics
Computer Science - Discrete Mathematics
68R15
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2408.14059
- Document Type :
- Working Paper