Back to Search Start Over

Global optimization for data assimilation in landslide tsunamis models

Authors :
Ferreiro-Ferreiro, A. M.
García-Rodríguez, J. A.
López-Salas, J. G.
Escalante, C.
Castro, M. J.
Source :
A.M. Ferreiro-Ferreiro, J.A. Garc\'ia-Rodr\'iguez, J.G. L\'opez-Salas, C. Escalante, M.J. Castro, Global optimization for data assimilation in landslide tsunami models, Journal of Computational Physics, Volume 403, 2020, 109069
Publication Year :
2024

Abstract

The goal of this article is to make automatic data assimilation for a landslide tsunami model, given by the coupling between a non-hydrostatic multi-layer shallow-water and a Savage-Hutter granular landslide model for submarine avalanches. The coupled model is discretized using a positivity-preserving second-order path-conservative finite volume scheme. The data assimilation problem is posed in a global optimization framework and we develop and compare parallel metaheuristic stochastic global optimization algorithms, more precisely multi-path versions of the Simulated Annealing algorithm, with hybrid global optimization algorithms based on hybridizing Simulated Annealing with gradient local searchers, like L-BGFS-B.

Details

Database :
arXiv
Journal :
A.M. Ferreiro-Ferreiro, J.A. Garc\'ia-Rodr\'iguez, J.G. L\'opez-Salas, C. Escalante, M.J. Castro, Global optimization for data assimilation in landslide tsunami models, Journal of Computational Physics, Volume 403, 2020, 109069
Publication Type :
Report
Accession number :
edsarx.2408.11819
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jcp.2019.109069