Back to Search
Start Over
DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization
- Publication Year :
- 2024
-
Abstract
- This paper addresses the challenge of out-of-distribution (OOD) generalization in graph machine learning, a field rapidly advancing yet grappling with the discrepancy between source and target data distributions. Traditional graph learning algorithms, based on the assumption of uniform distribution between training and test data, falter in real-world scenarios where this assumption fails, resulting in suboptimal performance. A principal factor contributing to this suboptimal performance is the inherent simplicity bias of neural networks trained through Stochastic Gradient Descent (SGD), which prefer simpler features over more complex yet equally or more predictive ones. This bias leads to a reliance on spurious correlations, adversely affecting OOD performance in various tasks such as image recognition, natural language understanding, and graph classification. Current methodologies, including subgraph-mixup and information bottleneck approaches, have achieved partial success but struggle to overcome simplicity bias, often reinforcing spurious correlations. To tackle this, we propose DIVE, training a collection of models to focus on all label-predictive subgraphs by encouraging the models to foster divergence on the subgraph mask, which circumvents the limitation of a model solely focusing on the subgraph corresponding to simple structural patterns. Specifically, we employs a regularizer to punish overlap in extracted subgraphs across models, thereby encouraging different models to concentrate on distinct structural patterns. Model selection for robust OOD performance is achieved through validation accuracy. Tested across four datasets from GOOD benchmark and one dataset from DrugOOD benchmark, our approach demonstrates significant improvement over existing methods, effectively addressing the simplicity bias and enhancing generalization in graph machine learning.
- Subjects :
- Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2408.04400
- Document Type :
- Working Paper