Back to Search
Start Over
Ultimately deformed double-network gels possess positive energetic elasticity
- Publication Year :
- 2024
-
Abstract
- The elasticity of rubbery polymer networks has been considered to be entropy-driven. On the other hand, studies on single polymer chain mechanics have revealed that the elasticity of ultimately stretched polymer chains is dominated by the energetic contribution mainly originating from chemical bond deformation. Here, we experimentally found that the elasticity of the double-network gel transits from the entropy-dominated one to the internal energy-driven one with its uniaxial deformation through the thermodynamic analysis. Based on this finding, we developed a simple mechanical model that takes into account the energetic contribution and found that this model approximately reproduces the temperature dependence of the stress-strain curve of the double-network gel. This study demonstrates the importance of the chemical perspective in the mechanical analysis of highly deformed rubbery polymer networks.
- Subjects :
- Condensed Matter - Soft Condensed Matter
Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2408.02523
- Document Type :
- Working Paper