Back to Search Start Over

TreeCSS: An Efficient Framework for Vertical Federated Learning

Authors :
Zhang, Qinbo
Yan, Xiao
Ding, Yukai
Xu, Quanqing
Hu, Chuang
Zhou, Xiaokai
Jiang, Jiawei
Publication Year :
2024

Abstract

Vertical federated learning (VFL) considers the case that the features of data samples are partitioned over different participants. VFL consists of two main steps, i.e., identify the common data samples for all participants (alignment) and train model using the aligned data samples (training). However, when there are many participants and data samples, both alignment and training become slow. As such, we propose TreeCSS as an efficient VFL framework that accelerates the two main steps. In particular, for sample alignment, we design an efficient multi-party private set intersection (MPSI) protocol called Tree-MPSI, which adopts a tree-based structure and a data-volume-aware scheduling strategy to parallelize alignment among the participants. As model training time scales with the number of data samples, we conduct coreset selection (CSS) to choose some representative data samples for training. Our CCS method adopts a clustering-based scheme for security and generality, which first clusters the features locally on each participant and then merges the local clustering results to select representative samples. In addition, we weight the samples according to their distances to the centroids to reflect their importance to model training. We evaluate the effectiveness and efficiency of our TreeCSS framework on various datasets and models. The results show that compared with vanilla VFL, TreeCSS accelerates training by up to 2.93x and achieves comparable model accuracy.<br />Comment: 16 pages, 7 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2408.01691
Document Type :
Working Paper