Back to Search Start Over

Detection of antifreeze molecule ethylene glycol in the hot molecular core G358.93$-$0.03 MM1

Authors :
Manna, Arijit
Pal, Sabyasachi
Viti, Serena
Source :
MNRAS, Volume 533, Issue 1, Pages 1143-1155, 2024
Publication Year :
2024

Abstract

The identification of complex prebiotic molecules using millimeter and submillimeter telescopes allows us to understand how the basic building blocks of life are formed in the universe. In the interstellar medium (ISM), ethylene glycol ((CH$_{2}$OH)$_{2}$) is the simplest sugar alcohol molecule, and it is the reduced alcohol of the simplest sugar-like molecule, glycolaldehyde (CH$_{2}$OHCHO). We present the first detection of the rotational emission lines of $aGg^{\prime}$ conformer of ethylene glycol ((CH$_{2}$OH)$_{2}$) towards the hot molecular core G358.93$-$0.03 MM1 using the Atacama Large Millimeter/Submillimeter Array (ALMA). The estimated column density of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ towards the G358.93$-$0.03 MM1 is (4.5$\pm$0.1)$\times$10$^{16}$ cm$^{-2}$ with an excitation temperature of 155$\pm$35 K. The abundance of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ with respect to H$_{2}$ is (1.4$\pm$0.5)$\times$10$^{-8}$. Similarly, the abundances of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ with respect to CH$_{2}$OHCHO and CH$_{3}$OH are 3.1$\pm$0.5 and (6.1$\pm$0.3)$\times$10$^{-3}$. We compare the estimated abundance of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ with the existing three-phase warm-up chemical model abundance of (CH$_{2}$OH)$_{2}$, and we notice the observed abundance and modelled abundance are nearly similar. We discuss the possible formation pathways of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ towards the hot molecular cores, and we find that $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ is probably created via the recombination of two CH$_{2}$OH radicals on the grain surface of G358.93$-$0.03 MM1.<br />Comment: Published in Monthly Notices of the Royal Astronomical Society (MNRAS)

Details

Database :
arXiv
Journal :
MNRAS, Volume 533, Issue 1, Pages 1143-1155, 2024
Publication Type :
Report
Accession number :
edsarx.2407.21572
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stae1864