Back to Search
Start Over
Atomic Structure of Self-Buffered BaZr(S,Se)$_3$ Epitaxial Thin Film Interfaces
- Publication Year :
- 2024
-
Abstract
- Understanding and controlling the growth of chalcogenide perovskite thin films through interface design is important for tailoring film properties. Here, the film and interface structure of BaZr(S,Se)$_3$ thin films grown on LaAlO$_3$ by molecular beam epitaxy and post-growth anion exchange is resolved using aberration-corrected scanning transmission electron microscopy. Epitaxial films are achieved from self-assembly of an interface ``buffer'' layer, which accommodates the large film/substrate lattice mismatch of nearly 40\% for the alloy film studied here. The self-assembled buffer layer, occurring for both the as-grown sulfide and post-selenization alloy films, is shown to have rock-salt-like atomic stacking akin to a Ruddlesden-Popper phase. Above this buffer, the film quickly transitions to the perovskite structure. Overall, these results provide insights into oxide-chalcogenide heteroepitaxial film growth, illustrating a process that yields relaxed, crystalline, epitaxial chalcogenide perovskite films that support ongoing studies of optoelectronic and device properties.
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.21269
- Document Type :
- Working Paper