Back to Search
Start Over
Magnetic Fields in Massive Star-forming Regions (MagMaR): Unveiling an Hourglass Magnetic Field in G333.46-0.16 using ALMA
- Publication Year :
- 2024
-
Abstract
- The contribution of the magnetic field to the formation of high-mass stars is poorly understood. We report the high-angular resolution ($\sim0.3^{\prime\prime}$, 870 au) map of the magnetic field projected on the plane of the sky (B$_\mathrm{POS}$) towards the high-mass star forming region G333.46$-$0.16 (G333), obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.2 mm as part of the Magnetic Fields in Massive Star-forming Regions (MagMaR) survey. The B$_\mathrm{POS}$ morphology found in this region is consistent with a canonical ``hourglass'' which suggest a dynamically important field. This region is fragmented into two protostars separated by $\sim1740$ au. Interestingly, by analysing H$^{13}$CO$^{+}$ ($J=3-2$) line emission, we find no velocity gradient over the extend of the continuum which is consistent with a strong field. We model the B$_\mathrm{POS}$, obtaining a marginally supercritical mass-to-flux ratio of 1.43, suggesting an initially strongly magnetized environment. Based on the Davis-Chandrasekhar-Fermi method, the magnetic field strength towards G333 is estimated to be 5.7 mG. The absence of strong rotation and outflows towards the central region of G333 suggests strong magnetic braking, consistent with a highly magnetized environment. Our study shows that despite being a strong regulator, the magnetic energy fails to prevent the process of fragmentation, as revealed by the formation of the two protostars in the central region.
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.16654
- Document Type :
- Working Paper