Back to Search
Start Over
A dilation theoretic approach to Banach spaces
- Publication Year :
- 2024
-
Abstract
- For a complex Banach space $\mathbb X$, we prove that $\mathbb X$ is a Hilbert space if and only if every strict contraction $T$ on $\mathbb X$ dilates to an isometry if and only if for every strict contraction $T$ on $\mathbb X$ the function $A_T: \mathbb X \rightarrow [0, \infty]$ defined by $A_T(x)=(\|x\|^2 -\|Tx\|^2)^{\frac{1}{2}}$ gives a norm on $\mathbb X$. We also find several other necessary and sufficient conditions in this thread such that a Banach sapce becomes a Hilbert space. We construct examples of strict contractions on non-Hilbert Banach spaces that do not dilate to isometries. Then we characterize all strict contractions on a non-Hilbert Banach space that dilate to isometries and find explicit isometric dilation for them. We prove several other results including characterizations of complemented subspaces in a Banach space, extension of a Wold isometry to a Banach space unitary and describing norm attainment sets of Banach space operators in terms of dilations.<br />Comment: 61 Pages, Submitted to journal
- Subjects :
- Mathematics - Functional Analysis
Mathematics - Operator Algebras
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.15112
- Document Type :
- Working Paper