Back to Search Start Over

Stochastic Online Metric Matching: Adversarial is no Harder than Stochastic

Authors :
Saberi, Amin
Yang, Mingwei
Yu, Sophie H.
Publication Year :
2024

Abstract

We study the stochastic online metric matching problem. In this problem, $m$ servers and $n$ requests are located in a metric space, where all servers are available upfront and requests arrive one at a time. In particular, servers are adversarially chosen, and requests are independently drawn from a known distribution. Upon the arrival of a new request, it needs to be immediately and irrevocably matched to a free server, resulting in a cost of their distance. The objective is to minimize the total matching cost. In this paper, we show that the problem can be reduced to a more accessible setting where both servers and requests are drawn from the same distribution by incurring a moderate cost. Combining our reduction with previous techniques, for $[0, 1]^d$ with various choices of distributions, we achieve improved competitive ratios and nearly optimal regrets in both balanced and unbalanced markets. In particular, we give $O(1)$-competitive algorithms for $d \geq 3$ in both balanced and unbalanced markets with smooth distributions. Our algorithms improve on the $O((\log \log \log n)^2)$ competitive ratio of \cite{DBLP:conf/icalp/GuptaGPW19} for balanced markets in various regimes, and provide the first positive results for unbalanced markets.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.14785
Document Type :
Working Paper