Back to Search Start Over

HeCiX: Integrating Knowledge Graphs and Large Language Models for Biomedical Research

Authors :
Kulkarni, Prerana Sanjay
Jain, Muskaan
Sheshanarayana, Disha
Parthiban, Srinivasan
Publication Year :
2024

Abstract

Despite advancements in drug development strategies, 90% of clinical trials fail. This suggests overlooked aspects in target validation and drug optimization. In order to address this, we introduce HeCiX-KG, Hetionet-Clinicaltrials neXus Knowledge Graph, a novel fusion of data from ClinicalTrials.gov and Hetionet in a single knowledge graph. HeCiX-KG combines data on previously conducted clinical trials from ClinicalTrials.gov, and domain expertise on diseases and genes from Hetionet. This offers a thorough resource for clinical researchers. Further, we introduce HeCiX, a system that uses LangChain to integrate HeCiX-KG with GPT-4, and increase its usability. HeCiX shows high performance during evaluation against a range of clinically relevant issues, proving this model to be promising for enhancing the effectiveness of clinical research. Thus, this approach provides a more holistic view of clinical trials and existing biological data.<br />Comment: 8 pages, 3 figures, under review

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.14030
Document Type :
Working Paper