Back to Search Start Over

Electrical manipulation of intervalley trions in twisted MoSe$_2$ homobilayers at room temperature

Authors :
Rosa, Bárbara L. T.
Junior, Paulo E. Faria
Cadore, Alisson R.
Yang, Yuhui
Koulas-Simos, Aris
Palekar, Chirag C.
Tongay, Sefaattin
Fabian, Jaroslav
Reitzenstein, Stephan
Publication Year :
2024

Abstract

The impressive physics and applications of intra- and interlayer excitons in a transition metal dichalcogenide twisted-bilayer make these systems compelling platforms for exploring the manipulation of their optoelectronic properties through electrical fields. This work studies the electrical control of excitonic complexes in twisted MoSe$_2$ homobilayer devices at room temperature. Gate-dependent micro-photoluminescence spectroscopy reveals an energy tunability of several meVs originating from the emission of excitonic complexes. Furthermore, our study investigates the twist-angle dependence of valley properties by fabricating devices with stacking angles of $\theta\sim1\degree$, $\theta\sim4\degree$ and $\theta\sim18\degree$. Strengthened by density functional theory calculations, the results suggest that, depending on the twist angle, the conduction band minima and hybridized states at the \textbf{Q}-point promote the formation of intervalley hybrid trions involving the \textbf{Q}-and \textbf{K}-points in the conduction band and the \textbf{K}-point in the valence band. By revealing the gate control of exciton species in twisted homobilayers, our findings open new avenues for engineering multifunctional optoelectronic devices based on ultrathin semiconducting systems.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.08063
Document Type :
Working Paper