Back to Search Start Over

On a planar Pierce--Yung operator

Authors :
Beltran, David
Guo, Shaoming
Hickman, Jonathan
Publication Year :
2024

Abstract

We show that the operator \begin{equation*} \mathcal{C} f(x,y) := \sup_{v\in \mathbb{R}} \Big|\mathrm{p.v.} \int_{\mathbb{R}} f(x-t, y-t^2) e^{i v t^3} \frac{\mathrm{d} t}{t} \Big| \end{equation*} is bounded on $L^p(\mathbb{R}^2)$ for every $1 < p < \infty$. This gives an affirmative answer to a question of Pierce and Yung.<br />Comment: 39 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2407.07563
Document Type :
Working Paper