Back to Search
Start Over
On a planar Pierce--Yung operator
- Publication Year :
- 2024
-
Abstract
- We show that the operator \begin{equation*} \mathcal{C} f(x,y) := \sup_{v\in \mathbb{R}} \Big|\mathrm{p.v.} \int_{\mathbb{R}} f(x-t, y-t^2) e^{i v t^3} \frac{\mathrm{d} t}{t} \Big| \end{equation*} is bounded on $L^p(\mathbb{R}^2)$ for every $1 < p < \infty$. This gives an affirmative answer to a question of Pierce and Yung.<br />Comment: 39 pages
- Subjects :
- Mathematics - Classical Analysis and ODEs
42B25, 42B20
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.07563
- Document Type :
- Working Paper