Back to Search
Start Over
A Degree Bound for Planar Functions
- Publication Year :
- 2024
-
Abstract
- Using Stickelberger's theorem on Gauss sums, we show that if $F$ is a planar function on a finite field $\mathbb{F}_q$, then for all non-zero functions $G : \mathbb{F}_q \to \mathbb{F}_q$, we have \begin{equation*} \mathrm{deg } \ G \circ F - \mathrm{deg } \ G \le \frac{n(p-1)}{2}\,, \end{equation*} where $q = p^n$ with $p$ a prime and $n$ a positive integer, and $\mathrm{deg } \ F$ is the algebraic degree of $F$, i.e., the degree of the corresponding multivariate polynomial over $\mathbb{F}_p$. This bound leads to a simpler proof of the classification of planar polynomials over $\mathbb{F}_p$ and planar monomials over $\mathbb{F}_{p^2}$. As a new result, using the same degree bound, we complete the classification of planar monomials for all $n = 2^k$ with $p>5$ and $k$ a non-negative integer. Finally, we state a conjecture on the sum of the base-$p$ digits of integers modulo $q-1$ that implies the complete classification of planar monomials over finite fields of characteristic $p>5$.
- Subjects :
- Mathematics - Combinatorics
05B25, 11T06, 11T24
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2407.04570
- Document Type :
- Working Paper