Back to Search Start Over

On the minimum number of radiation field parameters to specify gas cooling and heating functions

Authors :
Robinson, David
Avestruz, Camille
Gnedin, Nickolay Y.
Publication Year :
2024

Abstract

Fast and accurate approximations of gas cooling and heating functions are needed for hydrodynamic galaxy simulations. We use machine learning to analyze atomic gas cooling and heating functions in the presence of a generalized incident local radiation field computed by Cloudy. We characterize the radiation field through binned radiation field intensities instead of the photoionization rates used in our previous work. We find a set of 6 energy bins whose intensities exhibit relatively low correlation. We use these bins as features to train machine learning models to predict Cloudy cooling and heating functions at fixed metallicity. We compare the relative SHAP importance of the features. From the SHAP analysis, we identify a feature subset of 3 energy bins ($0.5-1, 1-4$, and $13-16 \, \mathrm{Ry}$) with the largest importance and train additional models on this subset. We compare the mean squared errors and distribution of errors on both the entire training data table and a randomly selected 20% test set withheld from model training. The machine learning models trained with 3 and 6 bins, as well as 3 and 4 photoionization rates, have comparable accuracy everywhere. We conclude that 3 energy bins (or 3 analogous photoionization rates: molecular hydrogen photodissociation, neutral hydrogen HI, and fully ionized carbon CVI) are sufficient to characterize the dependence of the gas cooling and heating functions on our assumed incident radiation field model.<br />Comment: 12 + 5 pages, 7 + 4 figures. To be submitted to OJA. Comments welcome!

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.19446
Document Type :
Working Paper