Back to Search Start Over

Sparse Outerstring Graphs Have Logarithmic Treewidth

Authors :
An, Shinwoo
Oh, Eunjin
Xue, Jie
Publication Year :
2024

Abstract

An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the boundary of the disk. We show that an outerstring graph with $n$ vertices has treewidth $O(\alpha\log n)$, where $\alpha$ denotes the arboricity of the graph, with an almost matching lower bound of $\Omega(\alpha \log (n/\alpha))$. As a corollary, we show that a $t$-biclique-free outerstring graph has treewidth $O(t(\log t)\log n)$. This leads to polynomial-time algorithms for most of the central NP-complete problems such as \textsc{Independent Set}, \textsc{Vertex Cover}, \textsc{Dominating Set}, \textsc{Feedback Vertex Set}, \textsc{Coloring} for sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and approximation) algorithms for various NP-complete problems such as \textsc{Vertex Cover}, \textsc{Feedback Vertex Set} and \textsc{Cycle Packing} for (not necessarily sparse) outerstring graphs.<br />Comment: 17pages, In ESA'24

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.17424
Document Type :
Working Paper