Back to Search
Start Over
Vastextures: Vast repository of textures and PBR materials extracted from real-world images using unsupervised methods
- Publication Year :
- 2024
-
Abstract
- Vastextures is a vast repository of 500,000 textures and PBR materials extracted from real-world images using an unsupervised process. The extracted materials and textures are extremely diverse and cover a vast range of real-world patterns, but at the same time less refined compared to existing repositories. The repository is composed of 2D textures cropped from natural images and SVBRDF/PBR materials generated from these textures. Textures and PBR materials are essential for CGI. Existing materials repositories focus on games, animation, and arts, that demand a limited amount of high-quality assets. However, virtual worlds and synthetic data are becoming increasingly important for training A.I systems for computer vision. This application demands a huge amount of diverse assets but at the same time less affected by noisy and unrefined assets. Vastexture aims to address this need by creating a free, huge, and diverse assets repository that covers as many real-world materials as possible. The materials are automatically extracted from natural images in two steps: 1) Automatically scanning a giant amount of images to identify and crop regions with uniform textures. This is done by splitting the image into a grid of cells and identifying regions in which all of the cells share a similar statistical distribution. 2) Extracting the properties of the PBR material from the cropped texture. This is done by randomly guessing every correlation between the properties of the texture image and the properties of the PBR material. The resulting PBR materials exhibit a vast amount of real-world patterns as well as unexpected emergent properties. Neutral nets trained on this repository outperformed nets trained using handcrafted assets.<br />Comment: Vastexture was published as part of Learning Zero-Shot Material States Segmentation, by Implanting Natural Image Patterns in Synthetic Data, refer to this work in citations. This document gives a more detailed and technical discussion of this repository
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2406.17146
- Document Type :
- Working Paper