Back to Search Start Over

GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation

Authors :
Li, Baiqi
Lin, Zhiqiu
Pathak, Deepak
Li, Jiayao
Fei, Yixin
Wu, Kewen
Ling, Tiffany
Xia, Xide
Zhang, Pengchuan
Neubig, Graham
Ramanan, Deva
Publication Year :
2024

Abstract

While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.<br />Comment: We open-source our dataset, model, and code at: https://linzhiqiu.github.io/papers/genai_bench ; Project page: https://linzhiqiu.github.io/papers/genai_bench ; GenAI-Bench was first introduced in arxiv:2404.01291. This article extends it with an additional GenAI-Rank benchmark

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.13743
Document Type :
Working Paper