Back to Search Start Over

MEMLA: Enhancing Multilingual Knowledge Editing with Neuron-Masked Low-Rank Adaptation

Authors :
Xie, Jiakuan
Cao, Pengfei
Chen, Yuheng
Chen, Yubo
Liu, Kang
Zhao, Jun
Publication Year :
2024

Abstract

Knowledge editing aims to adjust the knowledge within large language models (LLMs) to prevent their responses from becoming obsolete or inaccurate. However, existing works on knowledge editing are primarily conducted in a single language, which is inadequate for multilingual language models. In this paper, we focus on multilingual knowledge editing (MKE), which requires propagating updates across multiple languages. This necessity poses a significant challenge for the task. Furthermore, the limited availability of a comprehensive dataset for MKE exacerbates this challenge, hindering progress in this area. Hence, we introduce the Multilingual Knowledge Editing Benchmark (MKEB), a novel dataset comprising 12 languages and providing a complete evaluation framework. Additionally, we propose a method that enhances Multilingual knowledge Editing with neuron-Masked Low-Rank Adaptation (MEMLA). Specifically, we identify two categories of knowledge neurons to improve editing precision. Moreover, we perform LoRA-based editing with neuron masks to efficiently modify parameters and facilitate the propagation of updates across multiple languages. Experiments demonstrate that our method outperforms existing baselines and significantly enhances the multi-hop reasoning capability of the edited model, with minimal impact on its downstream task performance. The dataset and code will be made publicly available.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.11566
Document Type :
Working Paper