Back to Search
Start Over
Transverse optical gradient force in untethered rotating metaspinners
- Publication Year :
- 2024
-
Abstract
- We introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum. We find that a metaspinner is subject to an anomalous transverse optical gradient force that acts in concert with the classical gradient force. Consequently, when two or more metaspinners are trapped together in a laser beam, they collectively orbit the optical axis in the opposite direction to their spinning motion, in stark contrast to rotors coupled through hydrodynamic or mechanical interactions. The metaspinners delineated herein not only serve to illustrate the vast possibilities of utilizing optical metasurfaces for fundamental exploration of optical torques, but they also represent potential building-blocks of artificial active matter systems, light-driven micromachinery, and general-purpose optomechanical devices.
- Subjects :
- Physics - Optics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2406.11489
- Document Type :
- Working Paper