Back to Search
Start Over
A Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects
- Publication Year :
- 2024
-
Abstract
- Optical quantum information processing critically relies on Bell-state measurement, a ubiquitous operation for quantum communication and computing. Its practical realization involves the interference of optical modes and the detection of a single photon in an indistinguishable manner. Yet, in the absence of efficient photon-number resolution capabilities, errors arise from multi-photon components, decreasing the overall process fidelity. Here, we introduce a novel hybrid detection scheme for Bell-state measurement, leveraging both on-off single-photon detection and quadrature conditioning via homodyne detection. We derive explicit fidelities for quantum teleportation and entanglement swapping processes employing this strategy, demonstrating its efficacy. We also compare with photon-number resolving detectors and find a strong advantage of the hybrid scheme in a wide range of parameters. This work provides a new tool for linear optics schemes, with applications to quantum state engineering and quantum interconnects.
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2406.10331
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PRXQuantum.5.030331