Back to Search Start Over

Impact of Measurement Noise on Escaping Saddles in Variational Quantum Algorithms

Authors :
Kaminishi, Eriko
Mori, Takashi
Sugawara, Michihiko
Yamamoto, Naoki
Publication Year :
2024

Abstract

Stochastic gradient descent (SGD) is a frequently used optimization technique in classical machine learning and Variational Quantum Eigensolver (VQE). For the implementation of VQE on quantum hardware, the results are always affected by measurement shot noise. However, there are many unknowns about the structure and properties of the measurement noise in VQE and how it contributes to the optimization. In this work, we analyze the effect of measurement noise to the optimization dynamics. Especially, we focus on escaping from saddle points in the loss landscape, which is crucial in the minimization of the non-convex loss function. We find that the escape time (1) decreases as the measurement noise increases in a power-law fashion and (2) is expressed as a function of $\eta/N_s$ where $\eta$ is the learning rate and $N_s$ is the number of measurements. The latter means that the escape time is approximately constant when we vary $\eta$ and $N_s$ with the ratio $\eta/N_s$ held fixed. This scaling behavior is well explained by the stochastic differential equation (SDE) that is obtained by the continuous-time approximation of the discrete-time SGD. According to the SDE, $\eta/N_s$ is interpreted as the variance of measurement shot noise. This result tells us that we can learn about the optimization dynamics in VQE from the analysis based on the continuous-time SDE, which is theoretically simpler than the original discrete-time SGD.<br />Comment: 10pages, 8figures

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.09780
Document Type :
Working Paper