Back to Search Start Over

Cross-Modal Learning for Anomaly Detection in Fused Magnesium Smelting Process: Methodology and Benchmark

Authors :
Wu, Gaochang
Zhang, Yapeng
Deng, Lan
Zhang, Jingxin
Chai, Tianyou
Publication Year :
2024

Abstract

Fused Magnesium Furnace (FMF) is a crucial industrial equipment in the production of magnesia, and anomaly detection plays a pivotal role in ensuring its efficient, stable, and secure operation. Existing anomaly detection methods primarily focus on analyzing dominant anomalies using the process variables (such as arc current) or constructing neural networks based on abnormal visual features, while overlooking the intrinsic correlation of cross-modal information. This paper proposes a cross-modal Transformer (dubbed FmFormer), designed to facilitate anomaly detection in fused magnesium smelting processes by exploring the correlation between visual features (video) and process variables (current). Our approach introduces a novel tokenization paradigm to effectively bridge the substantial dimensionality gap between the 3D video modality and the 1D current modality in a multiscale manner, enabling a hierarchical reconstruction of pixel-level anomaly detection. Subsequently, the FmFormer leverages self-attention to learn internal features within each modality and bidirectional cross-attention to capture correlations across modalities. To validate the effectiveness of the proposed method, we also present a pioneering cross-modal benchmark of the fused magnesium smelting process, featuring synchronously acquired video and current data for over 2.2 million samples. Leveraging cross-modal learning, the proposed FmFormer achieves state-of-the-art performance in detecting anomalies, particularly under extreme interferences such as current fluctuations and visual occlusion caused by heavy water mist. The presented methodology and benchmark may be applicable to other industrial applications with some amendments. The benchmark will be released at https://github.com/GaochangWu/FMF-Benchmark.<br />Comment: 14 pages, 6 figures, 5 tables. Submitted to IEEE

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.09016
Document Type :
Working Paper