Back to Search Start Over

Composite helical edges from Abelian fractional topological insulators

Authors :
Chou, Yang-Zhi
Sarma, Sankar Das
Publication Year :
2024

Abstract

We study an interacting composite $(1+1/n)$ Abelian helical edge state made of a regular helical liquid carrying charge $e$ and a (fractionalized) helical liquid carrying charge $e/n$. A systematic framework is developed for these composite $(1+1/n)$ Abelian helical edge states with $n=1,2,3$. For $n=2$, the composite edge state consists of a regular helical Luttinger liquid and a fractional topological insulator (the Abelian $Z_4$ topological order) edge state arising from half-filled conjugated Chern bands. The composite edge state with $n=2$ is pertinent to the recent twisted MoTe$_2$ experiment, suggesting a possible fractional topological insulator with conductance $\frac{3}{2}\frac{e^2}{h}$ per edge. Using bosonization, we construct generic phase diagrams in the presence of $weak$ Rashba spin-orbit coupling. In addition to a phase of free bosons, we find a time-reversal symmetry-breaking localized insulator, two perfect positive drag phases, a perfect negative drag phase (for $n=2,3$), a time-reversal symmetric Anderson localization (only for $n=1$), and a disorder-dominated metallic phase analogous to the $\nu=2/3$ disordered fractional quantum Hall edges (only for $n=3$). We further compute the two-terminal edge-state conductance, the primary experimental characterization for the (fractional) topological insulator. Remarkably, the negative drag phase gives rise to an unusual edge-state conductance, $(1-1/n)\frac{e^2}{h}$, not directly associated with the filling factor. We further investigate the effect of an applied in-plane magnetic field. For $n>1$, the applied magnetic field can result in a phase with edge-state conductance $\frac{1}{n}\frac{e^2}{h}$, providing another testable signature. Our work establishes a systematic understanding of the composite $(1+1/n)$ Abelian helical edge, paving the way for future experimental and theoretical studies.<br />Comment: 22 pages and 6 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2406.06669
Document Type :
Working Paper