Back to Search Start Over

Higher order fractional weighted homogeneous spaces: characterization and finer embeddings

Authors :
Biswas, Nirjan
Kumar, Rohit
Source :
Journal of Mathematical Analysis and Applications (2024)
Publication Year :
2024

Abstract

In this article, for $N \geq 2, s \in (1,2), p\in (1, \frac{N}{s}), \sigma=s-1 $ and $a \in [0, \frac{N-sp}{2})$, we establish an isometric isomorphism between the higher order fractional weighted Beppo-Levi space \begin{align*} {\mathcal D}^{s,p}_a(\mathbb{R}^N) := \overline{\mathcal{C}_c^{\infty}(\mathbb{R}^N)}^{[\cdot]_{s,p,a}} \text{ where } [u]_{s,p,a} := \left( \iint_{\mathbb{R}^N \times \mathbb{R}^N} \frac{\left| \nabla u(x) -\nabla u(y) \right|^p}{\left|x-y \right|^{N+\sigma p}} \, \frac{\mathrm{d}x}{|x|^a} \frac{\mathrm{d}y}{|y|^a} \right)^{\frac{1}{p}}, \end{align*} and higher order fractional weighted homogeneous space \begin{align*} \mathring{W}^{s,p}_a(\mathbb{R}^N):= \left\{u \in L_a^{p^*_s}(\mathbb{R}^N): \| \nabla u \|_{L_a^{p^*_{\sigma}}(\mathbb{R}^N)} + [u]_{s,p,a} < \infty \right\} \end{align*} with the weighted Lebesgue norm \begin{align*} \| u \|_{L_a^{p^*_{\alpha}}(\mathbb{R}^N)}:= \left( \int_{\mathbb{R}^N} \frac{ |u(x)|^{p^*_{\alpha}}}{|x|^{\frac{2ap^*_{\alpha}}{p}}} \, {\mathrm{d}x} \right)^{\frac{1}{p^*_{\alpha}}}, \text{ where } p^*_{\alpha}=\frac{Np}{N-\alpha p} \text{ for } \alpha= s,\sigma. \end{align*} To achieve this, we prove that $\mathcal{C}_c^{\infty}(\mathbb{R}^N)$ is dense in $\mathring{W}^{s,p}_a(\mathbb{R}^N)$ with respect to $[\cdot]_{s,p,a}$, and $[\cdot]_{s,p,a}$ is an equivalent norm on $\mathring{W}^{s,p}_a(\mathbb{R}^N)$. Further, we obtain a finer embedding of ${\mathcal D}^{s,p}_a(\mathbb{R}^N)$ into the Lorentz space $L^{\frac{Np}{N-sp-2a}, p}(\mathbb{R}^N)$, where $L^{\frac{Np}{N-sp-2a}, p}(\mathbb{R}^N) \subsetneq L_a^{p^*_s}(\mathbb{R}^N)$.<br />Comment: 24 pages

Details

Database :
arXiv
Journal :
Journal of Mathematical Analysis and Applications (2024)
Publication Type :
Report
Accession number :
edsarx.2406.05788
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jmaa.2024.128935