Back to Search
Start Over
Approximate path decompositions of regular graphs
- Publication Year :
- 2024
-
Abstract
- We show that the edges of any $d$-regular graph can be almost decomposed into paths of length roughly $d$, giving an approximate solution to a problem of Kotzig from 1957. Along the way, we show that almost all of the vertices of a $d$-regular graph can be partitioned into $n/(d+1)$ paths, asymptotically confirming a conjecture of Magnant and Martin from 2009.<br />Comment: 34 pages, 1 figure
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2406.02514
- Document Type :
- Working Paper