Back to Search
Start Over
Room-temperature bulk plasticity and tunable dislocation densities in KTaO3
- Source :
- Journal of the American Ceramic Society, 2024
- Publication Year :
- 2024
-
Abstract
- We report room-temperature bulk plasticity mediated by dislocations in single-crystal cubic KTaO3, contrasting the conventional knowledge that single-crystal KTaO3 is susceptible to brittle cleavage. A mechanics-based combinatorial experimental approach using cyclic Brinell indentation, scratching, and uniaxial bulk compression consistently demonstrates room-temperature dislocation plasticity in KTaO3 from the mesoscale to the macroscale. This approach also delivers tunable dislocation densities and plastic zone sizes. Scanning transmission electron microscopy analysis underpins the activated slip system to be <110>{1-10}. Given the growing significance of KTaO3 as an emerging electronic oxide and the increasing interest in dislocations for tuning physical properties of oxides, our findings are expected to trigger synergistic research interest in KTaO3 with dislocations.
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Journal :
- Journal of the American Ceramic Society, 2024
- Publication Type :
- Report
- Accession number :
- edsarx.2406.00623
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1111/jace.20040