Back to Search Start Over

Several classes of BCH codes of length $n=\frac{q^{m}-1}{2}$

Authors :
Lian, Mengchen
Publication Year :
2024

Abstract

BCH codes are an important class of linear codes and find extensive utilization in communication and disk storage systems.This paper mainly analyzes the negacyclic BCH code and cyclic BCH code of length $\frac{q^m-1}{2}$. For negacyclic BCH code, we give the dimensions of $C_{(n,-1,\left\lceil \frac{\delta+1}{2}\right\rceil,0)}$ for $\delta =a\frac{q^m-1}{q-1},aq^{m-1}-1$($1\leq a <\frac{q-1}{2}$) and $\delta =a\frac{q^m-1}{q-1}+b\frac{q^m-1}{q^2-1},aq^{m-1}+(a+b)q^{m-2}-1$ $(2\mid m,1\leq a+b \leq q-1$,$\left\lceil \frac{q-a-2}{2}\right\rceil\geq 1)$. Furthermore, the dimensions of negacyclic BCH codes $C_{(n,-1,\delta,0)}$ with few nonzeros and $C_{(n,-1,\delta,b)}$ with $b\neq 0$ are settled. For cyclic BCH code, we give the weight distribution of extended code $\overline{C}_{(n,1,\delta,1)}$ and the parameters of dual code $C^{\perp}_{(n,1,\delta,1)}$, where $\delta_2\leq \delta \leq \delta_1$.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.19965
Document Type :
Working Paper