Back to Search
Start Over
Several classes of BCH codes of length $n=\frac{q^{m}-1}{2}$
- Publication Year :
- 2024
-
Abstract
- BCH codes are an important class of linear codes and find extensive utilization in communication and disk storage systems.This paper mainly analyzes the negacyclic BCH code and cyclic BCH code of length $\frac{q^m-1}{2}$. For negacyclic BCH code, we give the dimensions of $C_{(n,-1,\left\lceil \frac{\delta+1}{2}\right\rceil,0)}$ for $\delta =a\frac{q^m-1}{q-1},aq^{m-1}-1$($1\leq a <\frac{q-1}{2}$) and $\delta =a\frac{q^m-1}{q-1}+b\frac{q^m-1}{q^2-1},aq^{m-1}+(a+b)q^{m-2}-1$ $(2\mid m,1\leq a+b \leq q-1$,$\left\lceil \frac{q-a-2}{2}\right\rceil\geq 1)$. Furthermore, the dimensions of negacyclic BCH codes $C_{(n,-1,\delta,0)}$ with few nonzeros and $C_{(n,-1,\delta,b)}$ with $b\neq 0$ are settled. For cyclic BCH code, we give the weight distribution of extended code $\overline{C}_{(n,1,\delta,1)}$ and the parameters of dual code $C^{\perp}_{(n,1,\delta,1)}$, where $\delta_2\leq \delta \leq \delta_1$.
- Subjects :
- Computer Science - Information Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.19965
- Document Type :
- Working Paper