Back to Search Start Over

Learning Latent Graph Structures and their Uncertainty

Authors :
Manenti, Alessandro
Zambon, Daniele
Alippi, Cesare
Publication Year :
2024

Abstract

Within a prediction task, Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy. As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task. In this paper, we demonstrate that minimization of a point-prediction loss function, e.g., the mean absolute error, does not guarantee proper learning of the latent relational information and its associated uncertainty. Conversely, we prove that a suitable loss function on the stochastic model outputs simultaneously grants (i) the unknown adjacency matrix latent distribution and (ii) optimal performance on the prediction task. Finally, we propose a sampling-based method that solves this joint learning task. Empirical results validate our theoretical claims and demonstrate the effectiveness of the proposed approach.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.19933
Document Type :
Working Paper