Back to Search Start Over

Synthetic Data Generation for Intersectional Fairness by Leveraging Hierarchical Group Structure

Authors :
Maheshwari, Gaurav
Bellet, Aurélien
Denis, Pascal
Keller, Mikaela
Publication Year :
2024

Abstract

In this paper, we introduce a data augmentation approach specifically tailored to enhance intersectional fairness in classification tasks. Our method capitalizes on the hierarchical structure inherent to intersectionality, by viewing groups as intersections of their parent categories. This perspective allows us to augment data for smaller groups by learning a transformation function that combines data from these parent groups. Our empirical analysis, conducted on four diverse datasets including both text and images, reveals that classifiers trained with this data augmentation approach achieve superior intersectional fairness and are more robust to ``leveling down'' when compared to methods optimizing traditional group fairness metrics.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.14521
Document Type :
Working Paper