Back to Search Start Over

AdaGMLP: AdaBoosting GNN-to-MLP Knowledge Distillation

Authors :
Lu, Weigang
Guan, Ziyu
Zhao, Wei
Yang, Yaming
Source :
KDD 2024
Publication Year :
2024

Abstract

Graph Neural Networks (GNNs) have revolutionized graph-based machine learning, but their heavy computational demands pose challenges for latency-sensitive edge devices in practical industrial applications. In response, a new wave of methods, collectively known as GNN-to-MLP Knowledge Distillation, has emerged. They aim to transfer GNN-learned knowledge to a more efficient MLP student, which offers faster, resource-efficient inference while maintaining competitive performance compared to GNNs. However, these methods face significant challenges in situations with insufficient training data and incomplete test data, limiting their applicability in real-world applications. To address these challenges, we propose AdaGMLP, an AdaBoosting GNN-to-MLP Knowledge Distillation framework. It leverages an ensemble of diverse MLP students trained on different subsets of labeled nodes, addressing the issue of insufficient training data. Additionally, it incorporates a Node Alignment technique for robust predictions on test data with missing or incomplete features. Our experiments on seven benchmark datasets with different settings demonstrate that AdaGMLP outperforms existing G2M methods, making it suitable for a wide range of latency-sensitive real-world applications. We have submitted our code to the GitHub repository (https://github.com/WeigangLu/AdaGMLP-KDD24).<br />Comment: Accepted by KDD 2024

Details

Database :
arXiv
Journal :
KDD 2024
Publication Type :
Report
Accession number :
edsarx.2405.14307
Document Type :
Working Paper