Back to Search Start Over

Predicting the Influence of Adverse Weather on Pedestrian Detection with Automotive Radar and Lidar Sensors

Authors :
Weihmayr, Daniel
Sezgin, Fatih
Tolksdorf, Leon
Birkner, Christian
Jazar, Reza N.
Publication Year :
2024

Abstract

Pedestrians are among the most endangered traffic participants in road traffic. While pedestrian detection in nominal conditions is well established, the sensor and, therefore, the pedestrian detection performance degrades under adverse weather conditions. Understanding the influences of rain and fog on a specific radar and lidar sensor requires extensive testing, and if the sensors' specifications are altered, a retesting effort is required. These challenges are addressed in this paper, firstly by conducting comprehensive measurements collecting empirical data of pedestrian detection performance under varying rain and fog intensities in a controlled environment, and secondly, by introducing a dedicated Weather Filter (WF) model that predicts the effects of rain and fog on a user-specified radar and lidar on pedestrian detection performance. We use a state-of-the-art baseline model representing the physical relation of sensor specifications, which, however, lacks the representation of secondary weather effects, e.g., changes in pedestrian reflectivity or droplets on a sensor, and adjust it with empirical data to account for such. We find that our measurement results are in agreement with existent literature related to weather degredation and our WF outperforms the baseline model in predicting weather effects on pedestrian detection while only requiring a minimal testing effort.<br />Comment: Accepted for the 2024 Intelligent Vehicles Symposium, 7 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.12736
Document Type :
Working Paper