Back to Search Start Over

From SHAP Scores to Feature Importance Scores

Authors :
Letoffe, Olivier
Huang, Xuanxiang
Asher, Nicholas
Marques-Silva, Joao
Publication Year :
2024

Abstract

A central goal of eXplainable Artificial Intelligence (XAI) is to assign relative importance to the features of a Machine Learning (ML) model given some prediction. The importance of this task of explainability by feature attribution is illustrated by the ubiquitous recent use of tools such as SHAP and LIME. Unfortunately, the exact computation of feature attributions, using the game-theoretical foundation underlying SHAP and LIME, can yield manifestly unsatisfactory results, that tantamount to reporting misleading relative feature importance. Recent work targeted rigorous feature attribution, by studying axiomatic aggregations of features based on logic-based definitions of explanations by feature selection. This paper shows that there is an essential relationship between feature attribution and a priori voting power, and that those recently proposed axiomatic aggregations represent a few instantiations of the range of power indices studied in the past. Furthermore, it remains unclear how some of the most widely used power indices might be exploited as feature importance scores (FISs), i.e. the use of power indices in XAI, and which of these indices would be the best suited for the purposes of XAI by feature attribution, namely in terms of not producing results that could be deemed as unsatisfactory. This paper proposes novel desirable properties that FISs should exhibit. In addition, the paper also proposes novel FISs exhibiting the proposed properties. Finally, the paper conducts a rigorous analysis of the best-known power indices in terms of the proposed properties.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.11766
Document Type :
Working Paper