Back to Search Start Over

Towards a universal QAOA protocol: Evidence of a scaling advantage in solving some combinatorial optimization problems

Authors :
Montanez-Barrera, J. A.
Michielsen, Kristel
Publication Year :
2024

Abstract

The quantum approximate optimization algorithm (QAOA) is a promising algorithm for solving combinatorial optimization problems (COPs). In this algorithm, there are alternating layers consisting of a mixer and a problem Hamiltonian. Each layer $i=0,\ldots,p-1$ is parameterized by $\beta_i$ and $\gamma_i$. How to find these parameters has been an open question with the majority of the research focused on finding them using classical algorithms. In this work, we present evidence that fixed linear ramp schedules constitute a universal set of QAOA parameters, i.e., a set of $\gamma$ and $\beta$ parameters that rapidly approximate the optimal solution, $x^*$, independently of the COP selected, and that the success probability of finding it, $probability(x^*)$, increases with the number of QAOA layers $p$. We simulate linear ramp QAOA protocols (LR-QAOA) involving up to $N_q=42$ qubits and $p = 400$ layers on random instances of 9 different COPs. The results suggest that $probability(x^*) \approx 1/2^{(\eta N_q / p)}$ for a constant $\eta$. For example, when implementing LR-QAOA with $p=42$, the $probability(x^*)$ for 42-qubit Weighted MaxCut problems (W-MaxCut) increases from $2/2^{42}\approx 10^{-13}$ to an average of 0.13. We compare LR-QAOA, simulated annealing (SA), and branch-and-bound (B\&B) finding a scaling improvement in LR-QAOA. We test LR-QAOA on real hardware using IonQ Aria, Quantinuum H2-1, IBM Brisbane, IBM Kyoto, and IBM Osaka, encoding random weighted MaxCut (W-MaxCut) problems from 5 to 109 qubits and $p=3$ to $100$. Even for the largest case, $N_q=109$ qubits and $p=100$, information about the LR-QAOA optimization protocol is present. The circuit involved requires 21200 CNOT gates. These results show that LR-QAOA effectively finds high-quality solutions for a large variety of COPs and suggest a scaling advantage of quantum computation for combinatorial optimization.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.09169
Document Type :
Working Paper