Back to Search
Start Over
Metrics on permutations with the same descent set
- Publication Year :
- 2024
-
Abstract
- Let $S_n$ be the symmetric group on the set $[n]:=\{1,2,\ldots,n\}$. Given a permutation $\sigma=\sigma_1\sigma_2 \cdots \sigma_n \in S_n$, we say it has a descent at index $i$ if $\sigma_i>\sigma_{i+1}$. Let $\mathcal{D}(\sigma)$ be the set of all descents of $\sigma$ and define $\mathcal{D}(S;n)=\{\sigma\in S_n\, | \,\mathcal{D}(\sigma)=S\}$. We study the Hamming metric and $\ell_\infty$-metric on the sets $\mathcal{D}(S;n)$ for all possible nonempty $S\subset[n-1]$ to determine the maximum possible value that these metrics can achieve when restricted to these subsets.<br />Comment: 10 pages, 2 tables
- Subjects :
- Mathematics - Combinatorics
05A05, 05A15
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.06177
- Document Type :
- Working Paper