Back to Search Start Over

Metrics on permutations with the same descent set

Authors :
Diaz-Lopez, Alexander
Haymaker, Kathryn
McGarry, Colin
McMahon, Dylan
Publication Year :
2024

Abstract

Let $S_n$ be the symmetric group on the set $[n]:=\{1,2,\ldots,n\}$. Given a permutation $\sigma=\sigma_1\sigma_2 \cdots \sigma_n \in S_n$, we say it has a descent at index $i$ if $\sigma_i>\sigma_{i+1}$. Let $\mathcal{D}(\sigma)$ be the set of all descents of $\sigma$ and define $\mathcal{D}(S;n)=\{\sigma\in S_n\, | \,\mathcal{D}(\sigma)=S\}$. We study the Hamming metric and $\ell_\infty$-metric on the sets $\mathcal{D}(S;n)$ for all possible nonempty $S\subset[n-1]$ to determine the maximum possible value that these metrics can achieve when restricted to these subsets.<br />Comment: 10 pages, 2 tables

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.06177
Document Type :
Working Paper