Back to Search Start Over

The miniJPAS Survey: The radial distribution of star formation rates in faint X-ray active galactic nuclei

Authors :
Acharya, Nischal
Bonoli, Silvia
Salvato, Mara
Cortesi, Ariana
Delgado, M. Rosa González
Lopez, Ivan Ezequiel
Marquez, Isabel
Martínez-Solaeche, Ginés
Abdurro'uf
Alexander, David
Brusa, Marcella
Chaves-Montero, Jonás
Ontiveros, Juan Antonio Fernández
Laloux, Brivael
Lapi, Andrea
Mountrichas, George
Almeida, Cristina Ramos
Martín, Julio Esteban Rodríguez
Shankar, Francesco
Soria, Roberto
Vilchez, M. José
Abramo, Raul
Alcaniz, Jailson
Benitez, Narciso
Carneiro, Saulo
Cenarro, Javier
Cristóbal-Hornillos, David
Dupke, Renato
Ederoclite, Alessandro
Hernán-Caballero, A.
López-Sanjuan, Carlos
Marín-Franch, Antonio
de Oliveira, Caludia Mendes
Moles, Mariano
Sodré Jr., Laerte
Taylor, Keith
Varela, Jesús
Ramió, Héctor Vázquez
Publication Year :
2024

Abstract

We study the impact of black hole nuclear activity on both the global and radial star formation rate (SFR) profiles in X-ray-selected active galactic nuclei (AGN) in the field of miniJPAS, the precursor of the much wider J-PAS project. Our sample includes 32 AGN with z < 0.3 detected via the XMM-Newton and Chandra surveys. For comparison, we assembled a control sample of 71 star-forming (SF) galaxies with similar magnitudes, sizes, and redshifts. To derive the global properties of both the AGN and the control SF sample, we used CIGALE to fit the spectral energy distributions derived from the 56 narrowband and 4 broadband filters from miniJPAS. We find that AGN tend to reside in more massive galaxies than their SF counterparts. After matching samples based on stellar mass and comparing their SFRs and specific SFRs (sSFRs), no significant differences appear. This suggests that the presence of AGN does not strongly influence overall star formation. However, when we used miniJPAS as an integral field unit (IFU) to dissect galaxies along their position angle, a different picture emerges. We find that AGN tend to be more centrally concentrated in mass with respect to SF galaxies. Moreover, we find a suppression of the sSFR up to 1Re and then an enhancement beyond 1Re , strongly contrasting with the decreasing radial profile of sSFRs in SF galaxies. This could point to an inside-out quenching of AGN host galaxies. These findings suggest that the reason we do not see differences on a global scale is because star formation is suppressed in the central regions and enhanced in the outer regions of AGN host galaxies. While limited in terms of sample size, this work highlights the potential of the upcoming J-PAS as a wide-field low-resolution IFU for thousands of nearby galaxies and AGN.<br />Comment: 21 pages, 20 figures, Accepted for Publication in A&A

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2405.06010
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/202449287