Back to Search
Start Over
Classifying two-body Hamiltonians for Quantum Darwinism
- Publication Year :
- 2024
-
Abstract
- Quantum Darwinism is a paradigm to understand how classically objective reality emerges from within a fundamentally quantum universe. Despite the growing attention that this field of research as been enjoying, it is currently not known what specific properties a given Hamiltonian describing a generic quantum system must have to allow the emergence of classicality. Therefore, in the present work, we consider a broadly applicable generic model of an arbitrary finite-dimensional system interacting with an environment formed from an arbitrary collection of finite-dimensional degrees of freedom via an unspecified, potentially time-dependent Hamiltonian containing at most two-body interaction terms. We show that such models support quantum Darwinism if the set of operators acting on the system which enter the Hamiltonian satisfy a set of commutation relations with a pointer observable and with one other. We demonstrate our results by analyzing a wide range of example systems: a qutrit interacting with a qubit environment, a qubit-qubit model with interactions alternating in time, and a series of collision models including a minimal model of a quantum Maxwell demon.<br />Comment: 24 pages, 11 figures
- Subjects :
- Quantum Physics
Condensed Matter - Statistical Mechanics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2405.00805
- Document Type :
- Working Paper