Back to Search Start Over

Armored Core of PKI: Remove Signing Keys for CA via Efficient and Trusted Physical Certification

Authors :
Zhang, Xiaolin
Chen, Chenghao
Qin, Kailun
Wang, Yuxuan
Qu, Shipei
Wang, Tengfei
Zhang, Chi
Gu, Dawu
Publication Year :
2024

Abstract

The signing key exposure of Certificate Authorities (CAs) remains a critical concern in PKI. These keys can be exposed by carefully designed attacks or operational errors even today. Traditional protections fail to eliminate such risk and one leaked key is enough to compromise the CA. This long-standing dilemma motivates us to consider removing CAs' signing keys and propose Armored Core, the first PKI security extension using the trusted binding of Physically Unclonable Function (PUF) for certificate operations. It makes key exposure impossible by eliminating the digital signing keys in CA. To achieve this, we design a set of PUF-based X.509v3 certificate functions for CAs to generate physically trusted "signatures" without using a digital key. Moreover, we introduce a novel PUF transparency mechanism to effectively monitor the PUF operations in CAs. We integrate Armored Core into real-world PKI systems including Let's Encrypt Pebble and Certbot. We also provide a PUF-embedded RISC-V CPU prototype. The evaluation results show that Armored Core can offer stronger security guarantees through signing key removal and without causing any extra overhead, but improves the overall performance by 11% on storage and 4.9%-73.7% on computation.<br />Comment: Under peer review

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.15582
Document Type :
Working Paper