Back to Search Start Over

Automatic Classification of Subjective Time Perception Using Multi-modal Physiological Data of Air Traffic Controllers

Authors :
Aust, Till
Balta, Eirini
Vatakis, Argiro
Hamann, Heiko
Publication Year :
2024

Abstract

In high-pressure environments where human individuals must simultaneously monitor multiple entities, communicate effectively, and maintain intense focus, the perception of time becomes a critical factor influencing performance and well-being. One indicator of well-being can be the person's subjective time perception. In our project $ChronoPilot$, we aim to develop a device that modulates human subjective time perception. In this study, we present a method to automatically assess the subjective time perception of air traffic controllers, a group often faced with demanding conditions, using their physiological data and eleven state-of-the-art machine learning classifiers. The physiological data consist of photoplethysmogram, electrodermal activity, and temperature data. We find that the support vector classifier works best with an accuracy of 79 % and electrodermal activity provides the most descriptive biomarker. These findings are an important step towards closing the feedback loop of our $ChronoPilot$-device to automatically modulate the user's subjective time perception. This technological advancement may promise improvements in task management, stress reduction, and overall productivity in high-stakes professions.<br />Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.15213
Document Type :
Working Paper