Back to Search
Start Over
Zadeh's Type-2 Fuzzy Logic Systems: Precision and High-Quality Prediction Intervals
- Publication Year :
- 2024
-
Abstract
- General Type-2 (GT2) Fuzzy Logic Systems (FLSs) are perfect candidates to quantify uncertainty, which is crucial for informed decisions in high-risk tasks, as they are powerful tools in representing uncertainty. In this paper, we travel back in time to provide a new look at GT2-FLSs by adopting Zadeh's (Z) GT2 Fuzzy Set (FS) definition, intending to learn GT2-FLSs that are capable of achieving reliable High-Quality Prediction Intervals (HQ-PI) alongside precision. By integrating Z-GT2-FS with the \(\alpha\)-plane representation, we show that the design flexibility of GT2-FLS is increased as it takes away the dependency of the secondary membership function from the primary membership function. After detailing the construction of Z-GT2-FLSs, we provide solutions to challenges while learning from high-dimensional data: the curse of dimensionality, and integrating Deep Learning (DL) optimizers. We develop a DL framework for learning dual-focused Z-GT2-FLSs with high performances. Our study includes statistical analyses, highlighting that the Z-GT2-FLS not only exhibits high-precision performance but also produces HQ-PIs in comparison to its GT2 and IT2 fuzzy counterparts which have more learnable parameters. The results show that the Z-GT2-FLS has a huge potential in uncertainty quantification.<br />Comment: in the IEEE World Congress on Computational Intelligence, 2024
- Subjects :
- Computer Science - Machine Learning
Computer Science - Artificial Intelligence
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2404.12800
- Document Type :
- Working Paper