Back to Search Start Over

Scale Separation Effects on Simulations of Plasma Turbulence

Authors :
Edyvean, Jago
Parashar, Tulasi N.
Simpson, Tom
Juno, James
Delzanno, Gian Luca
Guo, Fan
Koshkarov, Oleksandr
Matthaeus, William H
Shay, Michael
Yang, Yan
Publication Year :
2024

Abstract

Understanding plasma turbulence requires a synthesis of experiments, observations, theory, and simulations. In the case of kinetic plasmas such as the solar wind, the lack of collisions renders the fluid closures such as viscosity meaningless and one needs to resort to higher order fluid models or kinetic models. Typically, the computational expense in such models is managed by simulating artificial values of certain parameters such as the ratio of the Alfv\'en speed to the speed of light ($v_A/c$) or the relative mass ratio of ions and electrons ($m_i/m_e$). Although, typically care is taken to use values as close as possible to realistic values within the computational constraints, these artificial values could potentially introduce unphysical effects. These unphysical effects could be significant at sub-ion scales, where kinetic effects are the most important. In this paper, we use the ten-moment fluid model in the Gkeyll framework to perform controlled numerical experiments, systematically varying the ion-electron mass ratio from a small value down to the realistic proton-electron mass ratio. We show that the unphysical mass ratio has a significant effect on the kinetic range dynamics as well as the heating of both the plasma species. The dissipative process for both ions and electrons become more compressive in nature, although the ions remain nearly incompressible in all cases. The electrons move from being dominated by incompressive viscous like heating/dissipation, to very compressive heating/dissipation dominated by compressions/rarefactions. While the heating change is significant for the electrons, a mass ratio of $m_i/m_e \sim 250$ captures the asymptotic behaviour of electron heating.<br />Comment: 13 pages (including bibliography), 11 figures and 2 tables

Subjects

Subjects :
Physics - Plasma Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.12105
Document Type :
Working Paper