Back to Search Start Over

The asymptotic distribution of the scaled remainder for pseudo golden ratio expansions of a continuous random variable

Authors :
Herbst, Ira W.
Møller, Jesper
Svane, Anne Marie
Publication Year :
2024

Abstract

Let $X=\sum_{k=1}^\infty X_k \beta^{-k}$ be the base-$\beta$ expansion of a continuous random variable $X$ on the unit interval where $\beta$ is the positive solution to $\beta^n = 1 + \beta + \cdots + \beta^{n-1}$ for an integer $n\ge 2$ (i.e., $\beta$ is a generalization of the golden mean for which $n=2$). We study the asymptotic distribution and convergence rate of the scaled remainder $\sum_{k=1}^\infty X_{m+k} \beta^{-k}$ when $m$ tends to infinity.<br />Comment: 13 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.08387
Document Type :
Working Paper