Back to Search Start Over

Orbital and Atmospheric Characterization of the 1RXS J034231.8+121622 System Using High-Resolution Spectroscopy Confirms That The Companion is a Low-Mass Star

Authors :
Ó, Clarissa R. Do
Sappey, Ben
Konopacky, Quinn M.
Ruffio, Jean-Baptiste
O'Neil, Kelly K.
Do, Tuan
Martinez, Gregory
Barman, Travis S.
Nguyen, Jayke S.
Xuan, Jerry W.
Theissen, Christopher A.
Blunt, Sarah
Thompson, William
Hsu, Chih-Chun
Baker, Ashley
Bartos, Randall
Blake, Geoffrey A.
Calvin, Benjamin
Cetre, Sylvain
Delorme, Jacques-Robert
Doppmann, Greg
Echeverri, Daniel
Finnerty, Luke
Fitzgerald, Michael P.
Inglis, Julie
Jovanovic, Nemanja
López, Ronald A.
Mawet, Dimitri
Morris, Evan
Pezzato, Jacklyn
Schofield, Tobias
Skemer, Andrew
Wallace, J. Kent
Wang, Jason J.
Wang, Ji
Liberman, Joshua
Publication Year :
2024

Abstract

The 1RXS J034231.8+121622 system consists of an M dwarf primary and a directly imaged low-mass stellar companion. We use high resolution spectroscopic data from Keck/KPIC to estimate the objects' atmospheric parameters and radial velocities (RVs). Using PHOENIX stellar models, we find that the primary has a temperature of 3460 $\pm$ 50 K a metallicity of 0.16 $\pm$ 0.04, while the secondary has a temperature of 2510 $\pm$ 50 K and a metallicity of $0.13\substack{+0.12 \\ -0.11}$. Recent work suggests this system is associated with the Hyades, placing it an older age than previous estimates. Both metallicities agree with current $[Fe/H]$ Hyades measurements (0.11 -- 0.21). Using stellar evolutionary models, we obtain significantly higher masses for the objects, of 0.30 $\pm$ 0.15 $M_\odot$ and 0.08 $\pm$ 0.01 $M_\odot$ (84 $\pm$ 11 $M_{Jup}$) respectively. Using the RVs and a new astrometry point from Keck/NIRC2, we find that the system is likely an edge-on, moderately eccentric ($0.41\substack{+0.27 \\ -0.08}$) configuration. We also estimate the C/O ratio of both objects using custom grid models, obtaining 0.42 $\pm$ 0.10 (primary) and 0.55 $\pm$ 0.10 (companion). From these results, we confirm that this system most likely went through a binary star formation process in the Hyades. The significant changes in this system's parameters since its discovery highlight the importance of high resolution spectroscopy for both orbital and atmospheric characterization of directly imaged companions.<br />Comment: 30 pages, 18 figures, accepted for publication in AJ

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.07742
Document Type :
Working Paper