Back to Search
Start Over
Machine learning-based similarity measure to forecast M&A from patent data
- Publication Year :
- 2024
-
Abstract
- Defining and finalizing Mergers and Acquisitions (M&A) requires complex human skills, which makes it very hard to automatically find the best partner or predict which firms will make a deal. In this work, we propose the MASS algorithm, a specifically designed measure of similarity between companies and we apply it to patenting activity data to forecast M&A deals. MASS is based on an extreme simplification of tree-based machine learning algorithms and naturally incorporates intuitive criteria for deals; as such, it is fully interpretable and explainable. By applying MASS to the Zephyr and Crunchbase datasets, we show that it outperforms LightGCN, a "black box" graph convolutional network algorithm. When similar companies have disjoint patenting activities, on the contrary, LightGCN turns out to be the most effective algorithm. This study provides a simple and powerful tool to model and predict M&A deals, offering valuable insights to managers and practitioners for informed decision-making.
- Subjects :
- Physics - Physics and Society
Quantitative Finance - Statistical Finance
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2404.07179
- Document Type :
- Working Paper